Protein nano-cages: Novel carriers for optimized targeted

ثبت نشده
چکیده

Since 1980, when the idea of drug-delivery was proposed, various drug-carriers have been developed, including DNA, proteins, liposomes and several other polymer cages, consisting of many well established natural and synthetic nano-particles. All these drug-carriers can self-assemble in the body and can be manipulated for safer delivery into target tissues. By definition, nano-scale drug delivery systems encompass any structure (either cage or particle) in the form of solid colloids, which range in size from 10 nm to 100 nm. Today, optimization of these nano drug-vehicles is a topic in many research centers. Researchers are trying to improve the carrier’s solubility and their loading capacity and also wish to increase the half-life of drug delivery cargos in target tissues. Efforts in recent years have led to the introduction of novel protein nano-cages composed of multiple protein subunits, which self-assemble within a superfine and precise format. Science their introduction these promising structure have shown many unique characteristics, including low toxicity, bio-system compatibility, minor immunogenicity, high solubility, and a relatively easy production in large scale. Herein, we review and discuss the recently developed protein nano-carriers that are used as drug cargos for targeted delivery and/or diagnostic tools. Neda Saraygord-Afshari ( ) Corresponding author: [email protected] : Investigation, Writing – Review & Editing; : Project Administration; : Investigation Author roles: Roudi NE Saraygord-Afshari N Hemmaty M Competing interests: No competing interests were disclosed. Roudi NE, Saraygord-Afshari N and Hemmaty M. How to cite this article: Protein nano-cages: Novel carriers for optimized targeted 2017, :1541 (doi: ) remedy [version 1; referees: 1 approved] F1000Research 6 10.12688/f1000research.11909.1 © 2017 Roudi NE . This is an open access article distributed under the terms of the , which Copyright: et al Creative Commons Attribution Licence permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) declared that no grants were involved in supporting this work. Grant information: 22 Aug 2017, :1541 (doi: ) First published: 6 10.12688/f1000research.11909.1 Referee Status:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing and Characterizing Nano-carriers Containing Nepeta Persica Extract and Their Effect on Bone Cancer

Aims Niosomes have been considered as carriers for targeted delivery of drugs in modern drug delivery systems. The Iranian Nepta (Nepta genus) has unique biological properties; thus, this plant was used in this study to prepare the optimized formulation of niosomes containing extract, and to evaluate its cytotoxicity. Methods & Materials Initially, the extract of Iranian Nepta (N. persica) was...

متن کامل

Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory

High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density function...

متن کامل

Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory

High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density function...

متن کامل

Adsorption of Bis(1,4-dinitro toprop-2-yl) Nitramine on Boron Nitride Nano-cages Surfaces: DFT Studies

In this study Bis(1,4-dinitro toprop-2-yl) Nitramine, BNA, was attached to boron nitride nano- cages (B12N12). , thermodynamic parameters of BNA with B12N12 have been computed using one of the methods of density functional theory (B3LYP) In the temperature variety 300 to 400 K each 10 degree one times, were calculated. So these materials were geometrically optimized. After that thermodynamic pa...

متن کامل

The thermodynamic parameters derived material [1,5-b] tetrazolo [1,2,4] Terry inflorescences (TTA) with boron nitride nano- cages in different conditions of temperature , density functional theory method.

In this study the reaction of the derivative , material [1,5-b]  tetrazolo [1,2,4] Terry inflorescences (TTA)  with boron nitride nano- cages in different conditions of temperature , density functional theory methods were studied . For this purpose, the material on both sides were geometrically optimized reaction , then the calculation of the thermodynamic parameters were performed on all of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017